
Introducing

Saturday, June 16, 12

Allow me to introduce myself

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Organizing Drupal
events since 2009

6+ years of
experience on PHP

Claudio Beatrice
@omissis

PHP, Drupal &
Symfony consulting

Web Radio Telecommunications

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

What’s Symfony2

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

A reusable set of standalone, decoupled,
and cohesive PHP 5.3 components

A full-stack web framework

A Request/Response framework built
around the HTTP specification

A promoter of best practices,
standardization and interoperability

An awesome community!

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Leave The STUPID Alone

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

As time went by, habits and practices that once seemed
acceptable have proven that they were making our code
harder to understand and maintain. In other words, STUPID.
But what makes code such a thing?
• Singleton
• Tight coupling
• Untestability
• Premature optimization
• Indescriptive naming
• Duplication

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Singleton

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

It’s a design pattern that restricts the creation of an object
to one instance(think of a DB connection).

It does introduce undesirable limitations(what if we’ll need
TWO DB connections?), global state and hardcoded
dependencies which are all making code more difficult to
test and more coupled.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Singleton

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

class DB
{
 private static $instance;

 private function __construct()
 {
 // ... code goes here ...
 }

 public static function getInstance()
 {
 if (empty(self::$instance)) {
 self::$instance = new self;
 }
 return self::$instance;
 }

 // ... more code goes here ...
}

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Tight Coupling

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Introduces hardcoded
dependencies between
classes, which complicates:
• code reuse
• unit testing
• integration
• modifications

It happens when classes are put in relation by using type
hints, static calls or direct instantiation.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Tight Coupling

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

// An example of tight coupling
class House {
 public function __construct() {
 $this->door = new Door();
 $this->window = new Window();
 }
}

// And a possible solution
class House {
 // Door and Window are interfaces
 public function __construct(Door $door, Window $window) {
 $this->door = $door;
 $this->window = $window;
 }
}

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Untestability

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

If classes are complex, tightly coupled or trying to do too
much, then there’s a good chance that it’s also quite hard if
not impossible to test it in isolation.

The lack of proper test coverage will make code harder to
maintain and change, as it becomes very difficult to tell if
any modification is actually breaking something.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Premature Optimization

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Most of the time major
performance issues are
caused by small portions
of code(80/20 rule).
It is easier to optimize
correct code than to
correct optimized code.

Performance are not always a concern, therefore
optimize when it’s a proved problem, you’ll save time
and raise productivity.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Indescriptive Naming

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

There are two hard things in computer science:
cache invalidation, naming things and off-by-one errors.

-- Phil Karlton, variated by the Interwebs

Even if hard, naming is a fundamental part of the job and
should be considered part of the documentation, therefore
remember to:
• communicate intents
• favor clarity over brevity
• think that code is read far more often than written, so

it’s more convenient to ease “reads” over “writes”

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Duplication

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

How many times did they tell you to not repeat yourself?

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

BE SOLID!

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

What alternatives to write STUPID code do we have?
Another acronym to the rescue: SOLID!
It encloses five class design principles:
• Single responsibility principle
• Open/closed principle
• Liskov substitution principle
• Interface segregation principle
• Dependency inversion principle

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Single Responsibility

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Every class should have a single responsibility and fully
encapsulate it.

If change becomes localized, complexity and cost of
change are reduced, moreover there’s less risk of ripple
effects.

There should never be more than
one reason for a class to change.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Single Responsibility

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

interface Modem
{
 function dial($phoneNumber);
 function hangup();
 function send($message);
 function receive();
}

The above interface shows two responsibilities: connection
management and data communication, making them good
candidates for two separate interfaces/implementations.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Open/Closed

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Software entities (classes, functions, etc) should
be open for extension, but closed for modification.

This principle states that the source code of software
entities shouldn’t ever be changed: those entities must be
derived in order to add the wanted behaviors.

Client Server Client
Abstract
Server

Server

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Liskov Substitution

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Objects in a program should be replaceable with
instances of their subtypes without altering any of the
desirable properties of that program, such as correctness
and performed task.

It intends to guarantee semantic interoperability of object
types in a hierarchy.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Liskov Substitution

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

class Rectangle {
 protected $width;
 protected $height;

 function setWidth($width) {...}
 function getWidth() {...}
 function setHeight($height) {...}
 function getHeight() {...}
}

class Square extends Rectangle {
 function setWidth($width) {
 $this->width = $width;
 $this->height = $width;
 }
 function setHeight($height) {
 $this->width= $height;
 $this->height = $height;
 }
}

function draw(Rectangle $r) {
 $r->setWidth(5);
 $r->setHeight(4);

 // is it correct to assume that
changing the width of a Rectangle
leaves is height unchanged?
 assertEquals(
 20,
 $r->setWidth() * $r->setHeight()
);
}

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Liskov Substitution

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

The flaw in the Rectangle-Square design shows that even
if conceptually a square is a rectangle, a Square object is
not a Rectangle object, since a Square does not behave
as a Rectangle.

As a result, the public behavior the clients expect for the
base class must be preserved in order to conform to the
LSP.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Interface Segregation

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Many client-specific interfaces are better than one big one.
This principle helps decreasing the coupling between
objects by minimizing the intersecting surface.

interface MultiFunctionPrinter
{
 function print(...);
 function scan(...);
 function fax(...);
}

interface Printer
{
 function print(...);
}

interface Scanner
{
 function print(...);
}

interface Fax
{
 function print(...);
}

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Dependency Inversion

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

• High-level entities should not depend on low-level entities
and both should depend on abstractions.
• Abstractions should not depend upon details: details

should depend upon abstractions.

Component A
Component A

Service

Component B

Component A Package

Component B Package

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

class Vehicle {
 protected $tyres;

 public function __construct() {
 $this->tyres = array_fill(0, 4, new Tyre(50));
 }
}
class Tyre {
 private $diameter;

 public function __construct($diameter) {
 $this->setDiameter($diameter);
 }

 public function setDiameter($diameter) {
 $this->diameter = $diameter;
 }

 public function getDiameter() {
 return $this->diameter;
 }
}

Dependency Inversion

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

namespace Vehicle;

class Vehicle {
 protected $tyres;

 function addTyre(AbstractTyre $tyre) {
 $this->tyres[] = $tyre;
 }
}

namespace Tyre;

use Vehicle\AbstractTyre;

class RaceTyre extends AbstractTyre {
 private $compound;

 function setCompound($compound) {...}

 function getCompound() {...}
}

namespace Vehicle;

abstract class AbstractTyre {
 private $diameter;

 function __construct($diameter) {...}

 function setDiameter($diameter) {...}

 function getDiameter() {...}
}

Dependency Inversion

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

How About Symfony Now?

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Being aware of the principles of software development
mentioned earlier allow us to better understand some of the
choices that have been made for the framework as well as
some of the tools that have been made available, such as:
• Class Loader
• Service Container
• Event Dispatcher
• HTTP Foundation
• HTTP Kernel

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Class Loader

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

It loads your project’s classes automatically if they’re
following a standard PHP convention aka PSR-0.

• Doctrine\Common\IsolatedClassLoader
=> /path/to/project/lib/vendor/Doctrine/Common/IsolatedClassLoader.php

• Symfony\Core\Request
=> /path/to/project/lib/vendor/Symfony/Core/Request.php

• Twig_Node_Expression_Array
=> /path/to/project/lib/vendor/Twig/Node/Expression/Array.php

It’s a great way to get out of the require_once
hell while gaining better interoperability and
lazy loading at the same time.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

A Service is any PHP object that
performs a “global” task: think of a
Mailer class.
A Service Container is a special
object (think of it as an Array of
Objects on Steroids) that
centralizes and standardizes the
way objects are constructed inside an application: instead of
directly creating Services, the developer configures the
Container to take care of the task.

Service Container

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

aka Dependency Injection Container

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Event Dispatcher

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

A lightweight implementation of the Observer Pattern,
it provides a powerful and easy way to extend objects.

Observer

+update

ConcreteObserver1

+update

ConcreteObserver2

+update

Observable

+attach
+detach
+notify

ConcreteObservable

+attach
+detach
+notify

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Event Dispatcher

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

use Symfony\Component\EventDispatcher\EventDispatcher;

$dispatcher = new EventDispatcher();

$callable = function (Event $event) use ($log) {
 $log->addWarning(‘th3 n1nj4 d1sp4tch3r 1s 4ft3r y0u’);
}
$dispatcher->addListener(‘foo.bar’, $callable);

$dispatcher->dispatch(‘foo.bar’, new Event());

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

HTTP Foundation

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

It replaces the PHP’s global variables and functions that
represent either requests or responses with a full-featured
object-oriented layer for the HTTP messages.

use Symfony\Component\HttpFoundation\Request;
// http://example.com/?foo=bar
$request = Request::createFromGlobals();
$request->query->get(‘foo’); // returns bar
// simulate a request
$request = Request::create('/foo', 'GET', array('name' => 'Bar'));

use Symfony\Component\HttpFoundation\Response;

$response = new Response('Content', 200, array(
 'content-type' => 'text/html'
));
// check the response is HTTP compliant and send it
$response->prepare($request);
$response->send();

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

HTTP Kernel

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

The Kernel is the core of Symfony2: it is built on top of the
HttpFoundation and its main goal is to “convert” a
Request object into a Response object using a Controller,
which in turn can be any kind of PHP callable.

interface HttpKernelInterface
{
 const MASTER_REQUEST = 1;
 const SUB_REQUEST = 2;

 /**
 * ...
 * @return Response A Response instance
 * ...
 * @api
 */
 function handle(Request $request, $type = self::MASTER_REQUEST,
$catch = true);
}

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

HTTP Kernel

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Request
resolve

controller controller
resolve

argumentsrequest response

view

exception

call
controller Response

terminate

exception

Sub-
Request

“sub-response” content

Workflow

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Symfony is not enough

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Let’s take a look at some of the most
important third-party libraries

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Doctrine2

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

The Doctrine Project is made of a selected set of PHP
libraries primarily focused on providing persistence
services and related functionality:
• Common
• Database Abstraction Layer
• Object Relational Mapper
• MongoDB Object Document Mapper
• CouchDB Object Document Mapper
• PHPCR Object Document Mapper
• Migrations

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Doctrine2

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

namespace Drupal\Bundle\NodeBundle\Document;

use Doctrine\ODM\MongoDB\Mapping\Annotations as MongoDB;
use Doctrine\Common\Persistence\PersistentObject;

/**
 * @MongoDB\Document(collection="node")
 */
class Node extends PersistentObject
{
 /**
 * @MongoDB\Id
 */
 protected $id;

 /**
 * @MongoDB\String
 */
 protected $title;

 // accessor and mutators
}

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Twig

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

A flexible, fast and secure template engine for PHP.

It offers a great set of features, a concise syntax and
very good performances (it compiles to PHP and
has an optional C extension); moreover it’s super
easy to extend and it’s thoughtfully documented.

It gives the presentation layer a big boost
in terms of expressiveness, making it
more powerful and easier to use:
prepare yourself for sweet hugs
by front-end developers :)

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Twig

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

{# Node list page #}
{% extends ‘layout.html.twig’ %}

{% macro node_render(node) %}
 <div id=”node-{{node.id}}”>
 <h2>{{ node.title|title }}</h2>
 <div>{{ node.creationDate|date(‘d/m/Y’) }}</div>
 <div>{{ node.body }}</div>
 <div>{{ node.tags|join(‘, ‘) }}</div>
 </div>
{% endmacro %}

{% block body %}
 {% for node in nodes %}
 node_render(node);
 {% else %}
 {{ ‘We did not find any node.’|trans }}
 {% endfor %}
{% endblock body %}

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Assetic

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

$css = new AssetCollection(array(
 new FileAsset('/path/to/src/styles.less', array(new LessFilter())),
 new GlobAsset('/path/to/css/*'),
), array(
 new Yui\CssCompressorFilter('/path/to/yuicompressor.jar'),
));

// this will echo CSS compiled by LESS and compressed by YUI
echo $css->dump();

An advanced asset management framework for PHP.

It ships with a strong set of filters for handling css, js,
less, sass, compression, minifying and much more.
Moreover, it’s nicely integrated with Twig.

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Giving The Devil His Due

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Some resources I used to make these slides:
• http://nikic.github.com/
• http://fabien.potencier.org/
• http://symfony.com/
• http://www.slideshare.net/jwage/symfony2-from-the-trenches
• http://www.slideshare.net/weaverryan/handson-with-the-symfony2-framework
• http://www.slideshare.net/weaverryan/symony2-a-next-generation-php-framework
• http://martinfowler.com/articles/injection.html
• http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/
http://nikic.github.com/
http://nikic.github.com/
http://nikic.github.com/
http://nikic.github.com/
http://symfony.com/
http://symfony.com/
http://www.slideshare.net/jwage/symfony2-from-the-trenches
http://www.slideshare.net/jwage/symfony2-from-the-trenches
http://www.slideshare.net/weaverryan/handson-with-the-symfony2-framework
http://www.slideshare.net/weaverryan/handson-with-the-symfony2-framework
http://www.slideshare.net/weaverryan/symony2-a-next-generation-php-framework
http://www.slideshare.net/weaverryan/symony2-a-next-generation-php-framework
http://www.slideshare.net/weaverryan/symony2-a-next-generation-php-framework
http://www.slideshare.net/weaverryan/symony2-a-next-generation-php-framework
http://www.slideshare.net/weaverryan/symony2-a-next-generation-php-framework
http://www.slideshare.net/weaverryan/symony2-a-next-generation-php-framework

And Many Moar!

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Find many more Symfony2 Bundles and PHP Libraries at
knpbundles.com and packagist.org! (and while you’re
at it, take a look at Composer! ;)

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/

Thank You!

© 2012 Agavee GmbH

Drupal Developer Days 2012 Barcelona - Introducing Symfony2

Claudio Beatrice
@omissis

Saturday, June 16, 12

http://livepage.apple.com/
http://livepage.apple.com/
https://twitter.com/%23!/omissis
https://twitter.com/%23!/omissis

