
Architecting Drupal Modules
Report from the Frontlines

Directory of Technology
Ronald Ashri

t: @ronald_istos

actSMART

path not always clear
building modules

drupal

you
http://www.flickr.com/photos/hesketh/2249658529

http://www.flickr.com/photos/hesketh/2249658529
http://www.flickr.com/photos/hesketh/2249658529

I want my module to use a javascript library
example 1

The PHP function drupal_add_js() lets you add a JavaScript file,
setting or inline code to the page and it takes 5 parameters (see
the api reference).

http://drupal.org/node/304255

http://drupal.org/node/304255

http://drupal.org/node/304255
http://drupal.org/node/304255
http://api.drupal.org/api/function/drupal_add_js/
http://api.drupal.org/api/function/drupal_add_js/
http://drupal.org/node/304255
http://drupal.org/node/304255

I want my module to use a javascript library
example 1

http://www.flickr.com/photos/42302655@N02/4064741545

http://www.flickr.com/photos/42302655@N02/4064741545
http://www.flickr.com/photos/42302655@N02/4064741545

what are we trying to do here
let’s take a step back

 DRUPAL

APIs (FAPI, DBTNG, ...)

Hooks (Events)

Library Functions (e.g. check_plain)

Systems (Menu, Search, Node Access)

MY
MODULE

Methodology, Framework, Patterns, Architecture
Building Software

Your Architecture
Elements and relationships

between them

Framework
Provides reusable elements

and underlying structure you
plug into

Methodology
 A set of guidelines /

processes that accompany
you from problem definition

to solution

Patterns
Proven reusable solutions

Methodology, Framework, Patterns, Architecture
Building Drupal Modules

Your Drupal Module
Architecture

Elements and relationships

Framework
Provides reusable elements

and underlying structure you
plug into

Methodology
 A set of guidelines /

processes that accompany
you from problem definition

to solution

Patterns
Proven reusable solutions

Drupal

?

?

how should I structure my files?
example 2

everything in the root of your module
directory

.module, .info in root, images in images, js
in js, inc in includes, views in views

some in root, some in directories based on
history, module evolution, style changes,
etc

how should I name my files
example 3

.module, .info, .inc, .install, .test

occasionaly throw in: .theme, .install.inc

sometimes: .<modulename>.<thing>.inc,
ClassName.inc

myconventionisbetter.me

no! MyConventionIsBetter.class.inc

I need to store data
example 4

my table via hook_schema + DBTNG

entities are the way to go - always!
(maybe?)

fields, then a fieldgroup entity (or node)
to add what you are missing

is your data content or configuration?

what is important in general
Guidelines

Drupal is a complex system of many interlinked parts

There are always many ways to skin a cat...
what the...?

It’s not about the recipes
- it’s about the principles

Guidelines + Patterns

what is important in general
Guidelines

Separation of concerns - (e.g. logic in
modules, presentation that can fully by
managed by themes, flexible admin)

Decoupled - more smaller modules that
incrementally add functionality, OO where
possible

Consistent - similar things always happen and
are described in the same way

not in a Drupal specific way
Define Problem and Design

You module solves a problem - you should be
able to describe that in generic terms.

A hotel owner needs to be able to display a
list of available rooms with their associated
descriptions given an arrival and departure
date

Vs: I need to get all bookable unit entities
and attach a field entity reference to them
pointing to Room Description nodes that I
can then render in Rooms view mode

not in a Drupal specific way
Define Problem and Design

Describe your architecture in generic terms
first and then in specific Drupal terms

Allows you to focus on what’s important
and not get distracted by how Drupal does
things

Enables you to better choose what Drupal
way to use subsequently

Entity API, Subdomain
Patterns - OO Patterns

Entity API offers interfaces and implementation of
those interfaces as well as helper “procedural” style
functions

Subdomain offers all of its core functionality via a
class - you can extend/replace via your own module

Allows us to plug into “known” generic ways of
doing things - reduces the burden of Drupal to
define new styles

Views, Commerce
Patterns - Drupal Patterns

Separate UI from core module functionality

Allows us to focus on each and replace

Form submit handlers, etc should use you
“core engine” functions - avoid stuffing a lot of
logic there

Can switch UI off for performace gains

Rooms
Patterns - Service Patterns

Where possible decouple interaction points
within same module

Rooms produces all availability data in JSON
following a callback

Allows us to use any number of display
techinques such as the FullCalendar JS
library

Can easily abstract and connect to non-
Drupal site

in conclusion

need to work on methodology

start collecting and documenting
patterns

discuss conventions

talk to me if interested - @ronald_istos

