Architecting Drupal Modules

Report from the Frontlines

Ronald Ashri

ISTOS

drupalrooms

Michael LUCK * Ronald ASHRI + Mark D'INVERNO

AGENTBASED actSMART

t: @ronald istos

uilding modules
path not always clear

-

p://www.flickr.com/photos/hesketh/2249658529

". l}'-

http://www.flickr.com/photos/hesketh/2249658529
http://www.flickr.com/photos/hesketh/2249658529

example 1

http://drupal.org/node/304255

Community Documentation

Community Docs Home @ Installation Cuide Administration Guide

4. Adding JavaScript to your theme or moduls

The PHP function drupal _add_js() lets you add a JavaScr
setting or inline code to the page and it takes 5 parame¢
the api reference).

http://drupal.org/node/304255

Community Documentation

Community Docs Home @ Installation Cuide Administration Guide

Managing JavaScript in Drupal 7

Adding JavaScript in the modaule's .info file

You can now add Javascript in the module's .info file if it should be added on every page. This
allows Javascript to be aggregated in an optimal way, and is the preferred method of adding
Javascript that most visitors will need on a typical site visit:

scripts[] = somescript.js

External JavaScript

drupal_add_js() now allows you to add external scripts.
Example:

drupal_add_js("http://example.com/example.js’, 'external’);

http://drupal.org/node/304255
http://drupal.org/node/304255
http://api.drupal.org/api/function/drupal_add_js/
http://api.drupal.org/api/function/drupal_add_js/
http://drupal.org/node/304255
http://drupal.org/node/304255

example 1

hook_library

7 system.api.php hook_library()

Registers JavaScript/CSS libraries associated with a modul

Modules implementing this return an array of arrays. The
readable name of the library. Each library may contain the

e ‘title': The human readable name of the library.

e 'website": The URL of the library's web site.

e 'version': A string specifying the version of the librarn
version like "1.2.3" is not a valid float. Use PHP's versi
Versions.

e 'js": An array of JavaScript elements; each element’s ki
element's value is used as Soptions array for drupal 3
module-specific) JavaScript settings, the key may be s
=> 'setting’, and the actual settings must be containe

e 'css': Like 'js', an array of CSS elements passed to dru

e 'dependencies': An array of libraries that are requirec
listing the module and name of another library. Note |
dependent library will also be added when this library

Lib ' API
m Version contro Revisions Automated |esting

P,

™~ eto { ’ 18 . 17, T O 8 ’1".‘» ") J ' u o
Posted by sun on May 18, 2009 at 12:51pm

The common denominator for all Drupal modules/profiles/themes that integrate with external
libraries.

This module introduces a common repository for libraries in sites/all/libraries resp.
sites/<domain>/libraries for contributed modules.

External libraries
Denotes libraries ("plugins”) that are neither shipped nor packaged with a project on
drupal.org. We do not want to host third-party libraries on drupal.org for a multitude of
reasons, starting with licensing, proceeding to different release cycles, and not necessarily
ending with fatal errors due to conflicts of having the same library installed in multiple
versions.

Drupal 7 only has built-in support for non-external libraries via hook_library(). But it is only
suitable for drupal.org projects that bundle their own library; i.e., the module author is the

creator and vendor of the library. Libraries APl should be used for externally developed and
distributed libraries. A simple example would be a third-party jQuery plugin.

\

s

http://www.flickr.com/photos/42 2(4064741545

http://www.flickr.com/photos/42302655@N02/4064741545
http://www.flickr.com/photos/42302655@N02/4064741545

let’s take a step back

APls (FAPI, DBTNG,...)

Hooks (Events)

DRUPAL

Library Functions (e.g. check plain)

Systems (Menu, Search, Node Access)

MY
MODULE

Building Software

Methodology Framework
A set of guidelines / Provides reusable elements
processes that accompany and underlying structure you
vou from problem definition plug into
to solution
Patterns

Proven reusable solutions

Your Architecture

Elements and relationships
between them

Building Drupal Modules

, Drupal

Methodology < Framework
A set of guidelines / Provides reusable elements
processes that accompany and underlying structure you
vou from problem definition plug into
to solution
Patterns?

Proven reusable solutions

Your Drupal Module

Architecture
Elements and relationships

example 2

| | everything in the root of your module
directory

| | .module, .info in root, images in images, js
in js, inc in includes, views in views

| | some in root, some in directories based on
history, module evolution, style changes,
etcC

example 3

' | .module, .info, .inc, .install, .test
| | occasionaly throw in: .theme, .install.inc

| | sometimes: .<modulename>.<thing>.inc,
ClassName.inc

| | myconventionisbetter.me

| | no! MyConventionlsBetter.class.inc

example 4

| | my table via hook_schema + DBTNG

|| entities are the way to go - always!
(maybe?)

| | fields, then a fieldgroup entity (or node)
to add what you are missing

| | is your data content or configuration?

Guidelines

Drupal is a complex system of many interlinked parts
There are always many ways to skin a cat... ‘

It’s not about the recipes *
- it’s about the principles

Guidelines + Patterns

Guidelines

| | Separation of concerns - (e.g. logic in
modules, presentation that can fully by
managed by themes, flexible admin)

| | Decoupled - more smaller modules that
incrementally add functionality, OO where
possible

| | Consistent - similar things always happen and
are described in the same way

Define Problem and Design

You module solves a problem - you should be
able to describe that in generic terms.

A hotel owner needs to be able to display a
list of available rooms with their associated
descriptions given an arrival and departure

date

Vs: | need to get all bookable unit entities
and attach a field entity reference to them
pointing to Room Description nodes that |
can then render in Rooms view mode

Define Problem and Design

Describe your architecture in generic terms
first and then in specific Drupal terms

Allows you to focus on what’s important
and not get distracted by how Drupal does
things

Enables you to better choose what Drupal
way to use subsequently

Patterns - OO Patterns

Entity API offers interfaces and implementation of
those interfaces as well as helper “procedural” style
functions

Subdomain offers all of its core functionality via a
class - you can extend/replace via your own module

Allows us to plug into “known” generic ways of

doing things - reduces the burden of Drupal to
define new styles

Patterns - Drupal Patterns

Separate Ul from core module functionality
Allows us to focus on each and replace

Form submit handlers, etc should use you
“core engine” functions - avoid stuffing a lot of
logic there

Can switch Ul off for performace gains

Patterns - Service Patterns

Where possible decouple interaction points
within same module

Rooms produces all availability data in JSON
following a callback

Allows us to use any number of display
techinques such as the FullCalendar JS
library

Can easily abstract and connect to non-
Drupal site

in conclusion

| | need to work on methodology

| | start collecting and documenting
patterns

| | discuss conventions

| | talk to me if interested - @ronald_istos

